You are not logged in, therefore you can only see 100 materials. Registration is free and unlocks all 40948 materials: Register or Log in

100 results (register for free to see all 40948 materials)

ID (OMDB) ⇅ ID (COD) ⇅ Formula ⇅ Space group H-M ⇅ Space group IT ⇅ Publication details Publisher ↑
36578 2016789 C6 H18 Cl2 N2 P 1 21/c 1 14 Hydrogen-bonding motifs and thermotropic polymorphism in redetermined halide salts of hexamethylenediamine Acta Crystallographica Section C, 2008, vol: 64, page: o537
27506 2202134 C14 H28 Br2 P 1 21/n 1 14 1,14-Dibromotetradecane Acta Crystallographica Section E, 2003, vol: 59, page: o708
22620 2221205 C8 H5 Cl N2 P 1 21/n 1 14 2-Chloroquinoxaline Acta Crystallographica Section E, 2009, vol: 65, page: o455
23663 2217577 C8 H5 N3 O3 P 1 21/n 1 14 7-Nitroquinazolin-4(3H)-one Acta Crystallographica Section E, 2008, vol: 64, page: o427
24288 2240558 C5 H10 Cl N3 P 1 21/n 1 14 Crystal structure of 2-(1H-imidazol-4-yl)ethanaminium chloride Acta Crystallographica Section E, 2015, vol: 71, page: o301
28507 2207364 C18 H18 N6 S2 P -1 2 2,3-Bis(1-methyl-1H-imidazol-2-ylsulfanylmethyl)quinoxaline Acta Crystallographica Section E, 2005, vol: 61, page: o3939
29210 2230379 C20 H24 N2 O6 P 1 21/c 1 14 (E,E)-1,2-Bis(2,4,5-trimethoxybenzylidene)hydrazine Acta Crystallographica Section E, 2011, vol: 67, page: o1526
29442 2232541 C18 H22 O6 P -1 2 rac-syn-Diethyl 2-hydroxy-4-oxo-1-phenylcyclohexane-1,2-dicarboxylate Acta Crystallographica Section E, 2011, vol: 67, page: o2977
24877 2202495 C13 H14 N4 O5 P -1 2 4-Dimethylaminopyridinium 2,4-dinitrophenolate: supramolecular aggregation through N---H···O, C---H···O, C---H···\p and \p--\p interactions Acta Crystallographica Section E, 2003, vol: 59, page: o1383
27388 2234180 C17 H20 N2 O3 P -1 2 4-Nitro-2-{[(tricyclo[3.3.1.1^3,7^]decan-1-yl)iminiumyl]methyl}phenolate Acta Crystallographica Section E, 2012, vol: 68, page: o1221

Is your relevant material missing?

  • We can share our experience running high-throughput calculations based on density functional theory.
  • Alternatively, our machine learning models trained on our large database can predict relevant material properties.

Feel free to contact us if you are interested in a partnership so that we can provide computationally relevant results.
Please email us at:

diracmaterials@gmail.com