You are not logged in, therefore you can only see 100 materials. Registration is free and unlocks all 40948 materials: Register or Log in

100 results (register for free to see all 40948 materials)

ID (OMDB) ⇅ ID (COD) ⇅ Formula ↑ Space group H-M ⇅ Space group IT ⇅ Publication details Publisher ⇅
18721 7205237 C H3 N5 P 21 21 21 19 Crystal structure of anhydrous 5-aminotetrazole and its high-pressure behavior CrystEngComm, 2011, vol: 13, page: 99
30131 2236287 C10 H10 Br2 N2 P 1 21/c 1 14 Redetermination of 2,2'-bipyridine-1,1'-diium dibromide Acta Crystallographica Section E, 2012, vol: 68, page: o3033
33301 2224129 C10 H10 N4 O3 C 1 2 1 5 4-(2,3-Dihydroxybenzylideneamino)-3-methyl-1H-1,2,4-triazol-5(4H)-one Acta Crystallographica Section E, 2009, vol: 65, page: o3039
32522 7106864 C10 H13 N O P 1 21 1 4 An organogel formed from a cyclic b-aminoalcohol Chem.Commun., 2011, vol: 47, page: 10746
36532 4064554 C10 H15 Bi Br2 P 21 21 21 19 Molecular Assemblies Based on Cp*BiX2Units (X = Cl, Br, I): An Experimental and Computational Study Organometallics, 2011, vol: 30, page: 2844
22475 2001686 C10 H16 N4 Se3 P 1 21 1 4 Structures of 2,3-diethyl-6,7-dihydro-5H-2a\l^4^-selena-2,3,4a,7a-tetraazacyclopent[cd]indene-1(2H),4(3H)-diselone and 1,4-bis(ethylimino)-5,6-dihydro-2,2a\l^4^,3-triselena-4a,6a-diazacyclopenta[cd]pentalene Acta Crystallographica Section C, 1993, vol: 49, page: 917
28609 7008472 C10 H21 B10 Co P -1 2 The synthesis and characterisation of 4,1,2-MC2B10 metallacarboranes. Dalton transactions (Cambridge, England : 2003), 2005, page: 1842
32702 2226811 C11 H10 Cl N P 1 21/c 1 14 4-Chloro-2,5-dimethylquinoline Acta Crystallographica Section E, 2010, vol: 66, page: o2020
33101 2017198 C11 H11 N3 O2 P 1 21/c 1 14 4-Aminopyridinium 4-aminobenzoate dihydrate and 4-aminopyridinium nicotinate Acta Crystallographica Section C, 2009, vol: 65, page: o361
34367 4100438 C11 H12 O4 P 21 21 21 19 Journal of the American Chemical Society, 2005

Is your relevant material missing?

  • We can share our experience running high-throughput calculations based on density functional theory.
  • Alternatively, our machine learning models trained on our large database can predict relevant material properties.

Feel free to contact us if you are interested in a partnership so that we can provide computationally relevant results.
Please email us at:

diracmaterials@gmail.com