You are not logged in, therefore you can only see 100 materials. Registration is free and unlocks all 40935 materials: Register or Log in

100 results (register for free to see all 40935 materials)

ID (OMDB) ⇅ ID (COD) ⇅ Formula ⇅ Space group H-M ⇅ Space group IT ⇅ Publication details Publisher ↓
32406 2222930 C7 H10 N6 O3 P 1 21/c 1 14 N-(1-Diacetylamino-1H-tetrazol-5-yl)acetamide Acta Crystallographica Section E, 2009, vol: 65, page: o1902
32466 2223676 C6 H10 N4 O6 C 1 2/c 1 15 1,3-Phenylenediammonium dinitrate Acta Crystallographica Section E, 2009, vol: 65, page: o2601
32658 2226213 C6 H11 F O5 P 21 21 21 19 6-Deoxy-6-fluoro-D-galactose Acta Crystallographica Section E, 2010, vol: 66, page: o1315
32702 2226811 C11 H10 Cl N P 1 21/c 1 14 4-Chloro-2,5-dimethylquinoline Acta Crystallographica Section E, 2010, vol: 66, page: o2020
33301 2224129 C10 H10 N4 O3 C 1 2 1 5 4-(2,3-Dihydroxybenzylideneamino)-3-methyl-1H-1,2,4-triazol-5(4H)-one Acta Crystallographica Section E, 2009, vol: 65, page: o3039
33458 2217503 C14 H7 N3 O3 P 1 21/n 1 14 3-(2-Nitrophenoxy)phthalonitrile Acta Crystallographica Section E, 2008, vol: 64, page: o356
34419 2200318 C18 H16 Cu N2 O4 P 1 21/a 1 14 Bisaquabis(8-hydroxyquinolinato-N,O)copper(II) Acta Crystallographica Section E, 2001, vol: 57, page: m251
37002 2232131 C24 H22 I2 Mn N6 O3 P 1 21 1 4 Diaquaiodido(2,3,5,6-tetra-2-pyridylpyrazine-\k^3^N^2^,N^1^,N^6^)manganese(II) iodide monohydrate Acta Crystallographica Section E, 2011, vol: 67, page: m1333
37004 2215753 C21 H32 O3 P 1 21 1 4 (3aS,5aR,6R,8aR)-3a-Hydroxy-5a-methyl-6-[(1R,2E,4R)-1,4,5-trimethyl-2-hexen-1-yl]-3a,4,5,5a,6,7,8,8a-octahydro-2H-cyclopenta[e]benzofuran-2-one Acta Crystallographica Section E, 2007, vol: 63, page: o4196
11883 2012171 C9 H9 I3 P -1 2 1,3,5-Triiodo-2,4,6-trimethylbenzene at 293K Acta Crystallographica Section C, 2001, vol: 57, page: 1106

Is your relevant material missing?

  • We can share our experience running high-throughput calculations based on density functional theory.
  • Alternatively, our machine learning models trained on our large database can predict relevant material properties.

Feel free to contact us if you are interested in a partnership so that we can provide computationally relevant results.
Please email us at:

diracmaterials@gmail.com